首页> 外文OA文献 >Rapidly detecting disorder in rhythmic biological signals: a spectral entropy measure to identify cardiac arrhythmias.
【2h】

Rapidly detecting disorder in rhythmic biological signals: a spectral entropy measure to identify cardiac arrhythmias.

机译:快速检测节律性生物信号中的疾病:一种频谱熵测量方法,可识别出心律不齐。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the use of a running measure of power spectrum disorder to distinguish between the normal sinus rhythm of the heart and two forms of cardiac arrhythmia: atrial fibrillation and atrial flutter. This spectral entropy measure is motivated by characteristic differences in the power spectra of beat timings during the three rhythms. We plot patient data derived from ten-beat windows on a "disorder map" and identify rhythm-defining ranges in the level and variance of spectral entropy values. Employing the spectral entropy within an automatic arrhythmia detection algorithm enables the classification of periods of atrial fibrillation from the time series of patients' beats. When the algorithm is set to identify abnormal rhythms within 6 s, it agrees with 85.7% of the annotations of professional rhythm assessors; for a response time of 30 s, this becomes 89.5%, and with 60 s, it is 90.3%. The algorithm provides a rapid way to detect atrial fibrillation, demonstrating usable response times as low as 6s. Measures of disorder in the frequency domain have practical significance in a range of biological signals: the techniques described in this paper have potential application for the rapid identification of disorder in other rhythmic signals.
机译:我们考虑使用运行中的功率谱障碍来区分正常的窦性心律和两种形式的心律失常:房颤和房扑。这种频谱熵测度是由三个节奏中的节拍正时的功率谱中的特征差异引起的。我们将来自十个拍子窗口的患者数据绘制在“失调图”上,并在频谱熵值的水平和方差中确定节奏定义范围。通过在自动心律失常检测算法中使用频谱熵,可以根据患者心跳的时间序列对心房颤动的周期进行分类。当算法设置为在6 s内识别异常节律时,它与专业节律评估者的注释的85.7%相符;对于30 s的响应时间,该值为89.5%,而对于60 s的响应时间为90.3%。该算法提供了一种快速的方法来检测心房颤动,表明可用的响应时间低至6s。频域中无序的测量在一系列生物信号中具有实际意义:本文描述的技术在快速识别其他有节奏信号中的无序中具有潜在的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号